
PROJECT SUMMARY
We used a robust data set to inform marten habitat suitability. Our top model 
had 3 variables representing 94% of permutation importance at varying scales:

We identified 8 core areas (mean area = 66.2 km2; range 15-260 km2; Figure 1).

We identified 10 corridors linking core areas (Figure 3) using Figure 2.
o northern model area: 6 corridors (mean length 27.9 km; range 0.5-40)
o southern model area: 3 corridors (mean length 15.1 km; range 8.8-19)
o corridor between north and south: 118 km length

From these data we conclude: predicted marten habitat in our model region 
(Lakes Basin [south] to Lassen [north]) was characterized by relatively small 
cores of high suitability (e.g., capable of supporting small numbers of 
individuals based on average home range size9), separated by relatively long 
distances (e.g., greater than the typical dispersal distance of a juvenile 
marten10). Patchiness was driven largely by elevation and groups of cores likely 
ranged from well-connected (shortest distance) to functionally isolated 
(longest distance; Figure 3, Figure 4).

And once our work was completed, the Dixie Fire happened… 
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Figure 5. During 2021, much of our modeling area 
burned in the 963,309 ac Dixie Fire, the largest single-
ignition wildfire in contemporary California history. 

Figure 1. We used a MaxEnt approach1,2 to model marten habitat suitability in 
northeastern California. Our point dataset included 12,393 marten locations 
(32 individuals; 2010-2018) thinned at 1-km and a random sample of 10,000 
background points. We scale-optimized abiotic and biotic predictor variables, 
fit 9 models, and evaluated model performance via lowest AICc values.

Predictor (Scale) Permutation Importance

Elevation (30-m) 47.4
Mean Biomass (990-m) 27.2

Mean Slope (990-m) 19.5
Mean Tree Density (270-m) 4.8

StDev of Canopy Cover (990-m) 1.2

Figure 6. Dixie Fire footprint (pink) overlaid on 
predicted habitat cores (dark green) and connectivity 
corridors (yellow). Dotted line shows model extent. 

Figure 7. Burn severity within the Dixie Fire. Also 
includes other fire footprints within the region from 
the 2020 and 2021 fire seasons (e.g., North Complex).

Figure 2. Our habitat suitability model provided the foundation for the 
resistance surface of our connectivity model. We transformed suitability values 
with a negative exponential function3 and rescaled values (1-1000) to 
accentuate resistance discrimination4. We modified the resistance surface to 
include movement costs not represented by suitability (e.g., open water)5.

WHERE DO WE GO FROM HERE?

Within the past two years, the Dixie Fire and other wildfires burned 17.5% of 
our predicted core/corridor network at high severity and an additional 6.9% at 
moderate severity (Figure 7).

Responses to wildfire by martens and other carnivore species are often 
poorly-understood11,12. Both the short- and long-term effects of recent fires 
on marten habitat availability in our modeling region are uncertain.

Given that martens exhibit strong individual- and population-level responses 
to forest disturbances13,14,15 (e.g., entirely avoid or modify behavior in altered, 
degraded, or fragmented habitats), yet are highly-vagile10,16 (e.g., capable of 
remarkably long-distance movements for their body size), they offer a 
compelling study subject in a post-fire landscape that may be increasingly 
patchy and disconnected.

We suggest land managers and interested entities invest time and funding to:
- Conduct surveys within fire perimeters to describe current marten 

distributions and future expansions or contractions.
- Identify tangible objectives (e.g., “S.M.A.R.T.” goals) to align research and 

management, perhaps focused on evaluating innovative restoration 
opportunities over large spatial scales.
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Figure 3. We incorporated habitat cores with our resistance surface to 
delineate potential marten movement corridors. We modeled least cost path 
corridors (i.e., predicted least resistance) using Linkage Mapper version 2.04.
Corridors had a minimum width of 600,000 cost distance units (approximately 
0.7 km width) as determined by expert opinion and previous analyses5.

Figure 4. Pinchpoints are areas where movement may be funneled that can be 
prioritized for protection, restoration, or enhancement6. We used the 
Pinchpoint Mapper tool via Circuitscape software7 to identify narrow corridor 
sections. We constrained, then reclassified density outputs to include areas 
with density values greater or equal to the mean plus 2 standard deviations8. 
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